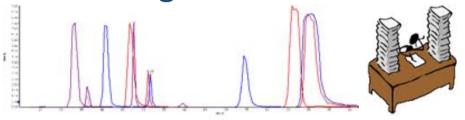


Journée SFTA, Paris, 2016

Préparation d'échantillons hors ligne: exemples de stratégies appliquées au dépistage des conduites addictives.



S. SALLE*, A. LEMAIRE, C. COHIER, D. COSTE, O. ROUSSEL Institut de Recherche Criminelle de la Gendarmerie Nationale

INTRODUCTION (1/3)

Analyse en toxicologie :

Echantillon

→ pré-analytique + analytique + interprétation →

rapport d'analyse

- Objectifs de la préparation d'échantillon :
 - → Supprimer les interférences
 - → Concentrer la ou les substances d'intérêt
 - + Rendre compatible l'échantillon avec le système analytique
 - → Stabiliser l'échantillon

INTRODUCTION (2/3)

Paramètres à prendre en compte lors du développement

INTRODUCTION (2/3)

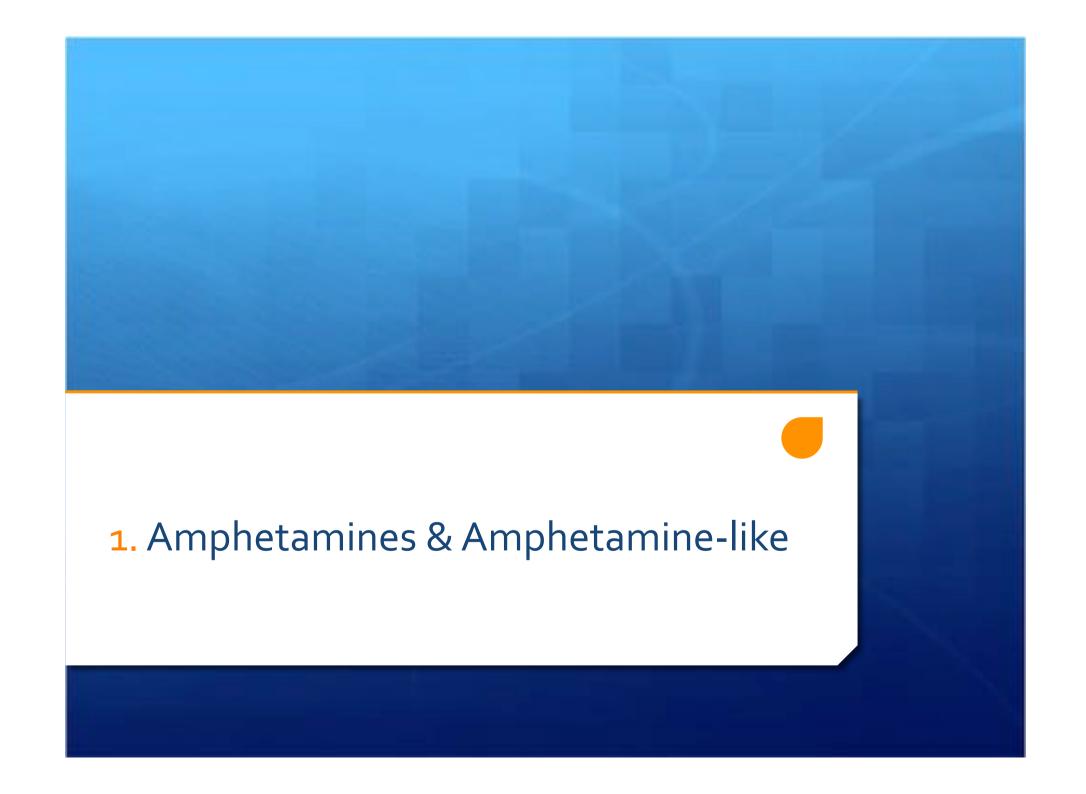
Paramètres à prendre en compte lors du développement

- Substance
 - → Ionisation (pKa)
 - → Polarité (logP)
 - **+** ...
- Environnement
 - → Coût
 - → Temps technicien
 - Cadre légal
 - Matériel disponible

+ ...

- → Solide / liquide
- → Fraiche ou dégradée
- **+** ..
- Système analytique
 - → CPG / CLHP / autre
 - + Détecteur
 - **+** ...

INTRODUCTION (3/3)


- - ± préparation de la matrice
 - ± extraction
 - ± dérivation
 - ★ ± solvant d'injection

- Préparation d'échantillon

 Application au dépistage des conduites addictives
 - Amphétamines et amphétaminelike / sang
 - → ELL (extraction liquide-liquide)
 - → Cocaïne & opiacés / sang
 - → dérivation, SLE (extraction liquide simplifiée)
 - Stupéfiants / cheveux
 - → digestion, SPE
 - → GHB, glucuronides, stupéfiants / fluides biologiques
 - → dilution +/- précipitation

Les autres techniques (HS, SPME,...) ne seront pas traitées

Objectifs et contraintes

Applications

- → Sécurité Routière : CPG-SM ; dosage
- Criblage des principales NPS amphetamine-like
 - Phényléthylamines (PEAs); Amphétamines (AMPs); Cathinones (CATs); Ephedrines (EPHs); Arylcylclohexylamines (ACH); Tryptamines (TRYs); Piperazines (PPZs)

Objectifs majeurs

- → Réduction du temps technicien
- Optimisation dérivation
- → Nouvelle ELL suite à arrêt commercialisation toxitubes A

CATS
$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{2}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{2}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{2}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{4}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{4}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{4}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

Méthode

Préparation d'échantillon

+Extraction

- ♦ 1 mL sang total
- ♦ 1 mL tampon Na₂CO₃ 1M
- ♦ 4 mL Hexane/dichlo. (50/50)
- + 20 μL EI deutérés à 5 mg/L

+ Dérivation

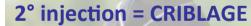
- Directement dans phase organique
- ♦ HFBA (60°C, 20min)
- ♦ Neutralisation alcaline

+ Concentration

- ♦ Evaporation à sec
- Reprise 40μL Acétate éthyle

Paramètre CPG

Injection	1 μL à 5 μL/s		
Temp. Injection	280 °C		
Mode injection	splitless (1 min)		
Débit du split	20 mL/min		
Split ratio	33		
Débit	0,6 mL/min (constant) PHENOMENEX ZB drug1 avec garde (10m x 0,18mm x 0,18µm)		
Colonne			


2 paramétrages SM

1° injection = DOSAGE

Paramètres : SIM

■ 12 substances

■ 10 -490 ng/mL

■ Paramètres : Full scan

Identification : tR +

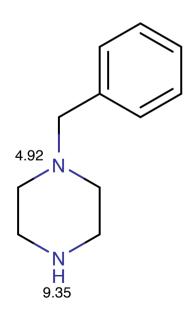
Spectre

Sensibilité: LD sur 44

Thermo Scientific Ultra-DSQ ™ II

Performances de la méthode

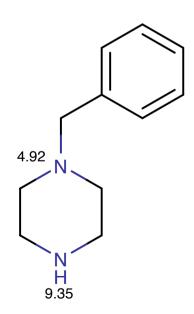
Résolution

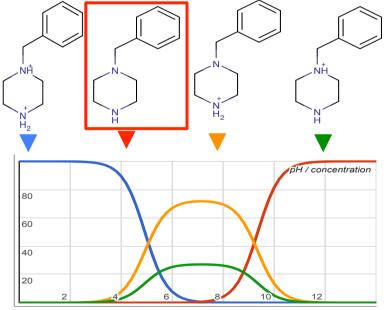

	Phényléthylamines	Amphétamines	Ephédrines	Cathinones	ACH	Tryptamines	Pipérazines
SIM		amphétamine* (4,98)	éphédrine (5,71)	méphédrone* (8,89)	norkéta (13,58)		
		méthamph* (6,35)	pseudoéph. (6,71)	méthylone* (14,11)			
		MDA* (10,33)		MDPV* (19,72)			
		MDMA* (12,56)					
		MDEA* (12,90)					
		MBDB* (13,62)					
	phénéthylamine (5,20)	4-fluoroamph* (5,22)	cathine (5,12)	fléphédrone* (6,85)	PCP* (15,60)	DMT* (17,98)	BZP* (12,24)
	mescaline* (14,08)	éthylamph* (6,55)		methcat* (7,25)	kétamine* (16,21)		TFMPP (12,70)
	methylphénidate* (15,57)	PMA* (8,43)		ethcat* (8,23)			mCPP (17,21)
	éthylphénidate* (16,11)	PMMA* (10,53)		4MEC* (9,95)			
FC	2CB* (16,69)	2,5-DMA* (10,87)		méthédrone* (12,19)			
FS		DOM* (11,44)		butylone* (14,84)			
		4MTA* (12,04)		ethylone* (15,18)			
		DOET* (12,22)		pyrovalérone* (15,51)			
		TMA* (13,99)		pentylone* (15,95)			
		DOB* (15,85)		naphyrone* (21,50)			

Sensibilité : 10 ng/mL (sauf méthylone, DMT, naphyrone)

Choix du pH

Exemple de la Benzylpiperazine

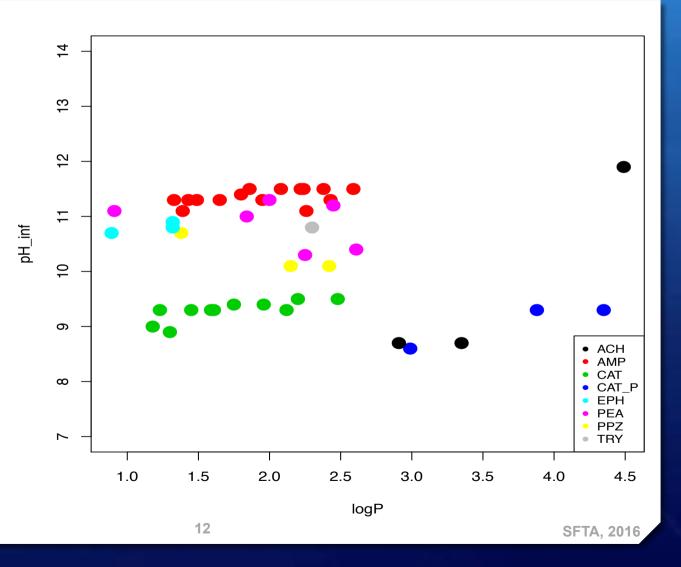

- pKa
 - → 2 sites → 2 pKa
 - utilisation pratique de cette information ??


Choix du pH

Exemple de la Benzylpiperazine

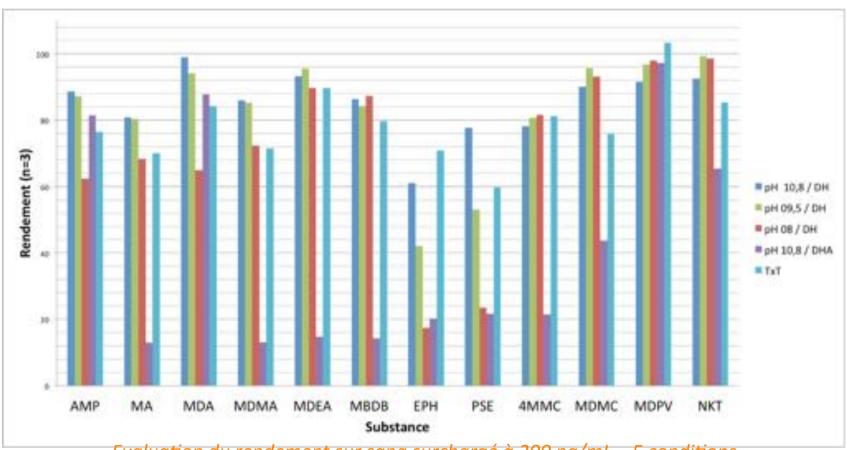
- pKa
 - → 2 sites → 2 pKa
 - utilisation pratique de cette information ??

- Utilisation du site chemicalize.org
 - Pourcentage de la forme = f(pH)
 - + Focus sur forme neutre
 - → BZP: 95% neutre de 10,6 à 14



11

Choix du pH et du solvant


Ensemble des substances évaluées : 95% sous forme neutre d'un pH
 X à pH 14

 Modélisation de ce point X en fonction du logP (logiciel R)

Choix du pH et du solvant : évaluation des rendements

Meilleur compromis testé = pH ++ basique (10,8) et mélange Dichlo/ hexane

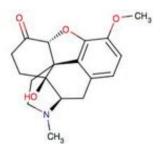
Evaluation du rendement sur sang surchargé à 200 ng/mL – 5 conditions

2. Cocaïne et Opiacés

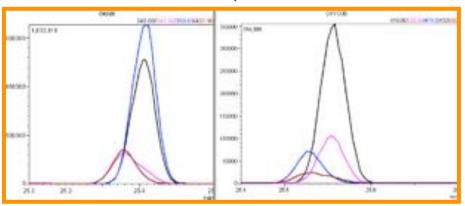
Objectifs et contraintes

- Applications
 - → Sécurité routière : CPG-SM ; Dosage ; consensus SFTA
 - → Intoxications aux opiacés : criblage large
- Objectifs majeurs
 - → Ajout oxycodone
 - + Augmenter la sensibilité et le rendement
 - → Optimiser le temps de traitement (méthode à 3 extractions)
 - Automatiser la préparation ?
 - → Réduire l'utilisation de solvants chlorés ?

2. Cocaïne et Opiacés


Ajout de l'oxycodone -> impact sur la dérivation

Méthode précédente


Sang surchargé à 500 ng/mL par oxycodone et 6MAM et leur deutérés – ions de suivi de l'oxycodone et de son deutéré

 Substances coéluées, ion des deutérés communs, signal faible

Méthode avec dérivation préextraction de la cétone

- Dérivation par méthoxyamine (15min, Temp. Ambiante) → cétoxime
- → Dérivation BSTFA post-extraction

- Substances séparées, ions différents
- Validation [10-500] ng/mL COC&OP
- Dérivation efficace sur morphones

2. Cocaïne et Opiacés

Extraction liquide simplifiée (SLE)

	Méthode précédente	Méthode SLE		
Déprotéinisation	Acétonitrile	Ultrasons + acidification (méthoxyamine)		
Extraction	3 extractions	Passage sur cartouche NOVUM 12CC de l'échantillon tamponné puis du solvant		
Temps technicien 8 heures Non automatisable		3 heures Automatisable		
Rendement morphine (n=3)	40,2%	67, 1 % - 24,9% - 2,9% - 86,7 %		
Bruit de fond				
Validation	Opiacés + Cocaïniques [10 - 500] ng/mL	Prometteur opiacés, peu efficace cocaïniques → Poursuite du développement		

3. Cheveux et Stupéfiants

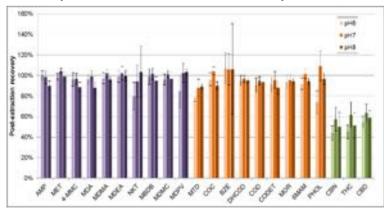
Objectifs et contraintes

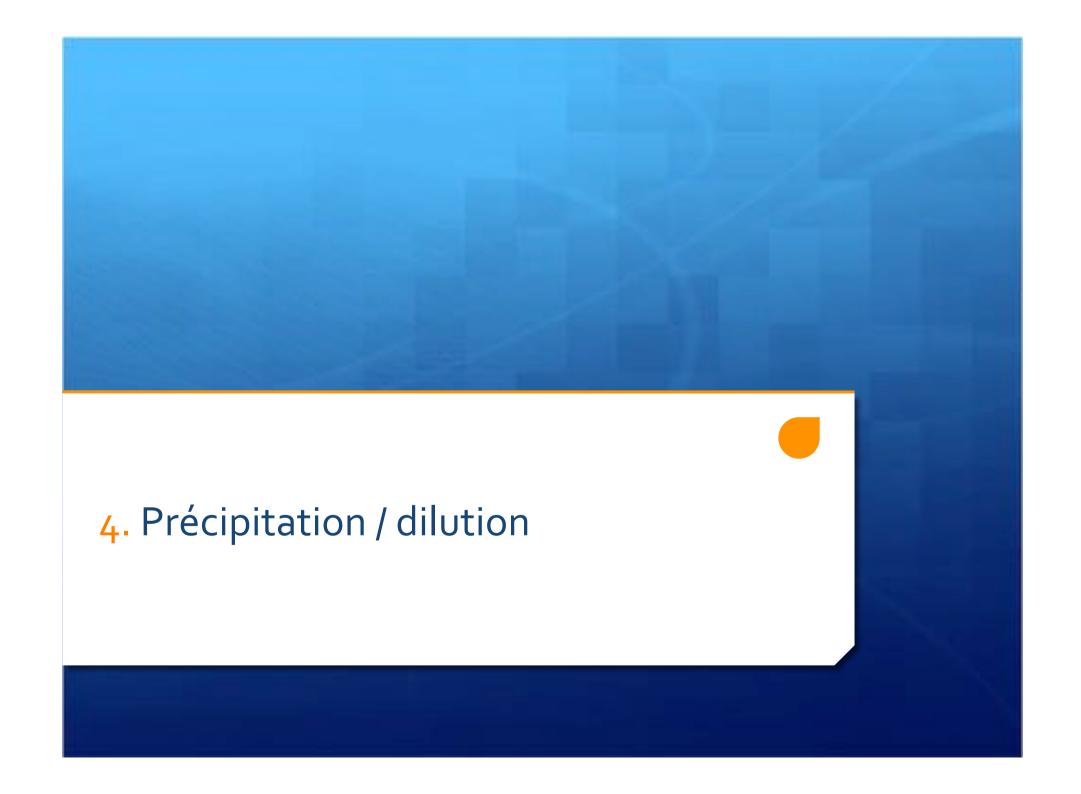
- Applications
 - + Recherche des causes de la mort
 - → Soumission chimique
 - Évaluation des conduites addictives
- Objectifs majeurs
 - → CPG-SM²
 - → 1 seule préparation pour tous les stupéfiants → deux dérivations différentes, stabilité des substances
 - → Atteindre LQ compatibles avec seuils de la SOHT
 - ★ Limiter les effets matrices et encrassement (et donc maintenance)

3. Cheveux et Stupéfiants

Digestion et extraction phase solide (SPE

Digestion


→ Poudre de cheveux par broyeur à billes (Bullet blender Storm 5®, Next advance)

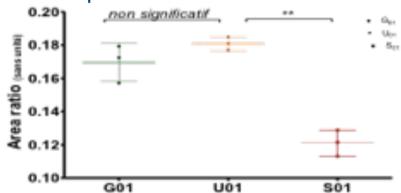


- Mise en solution dans Méthanol (50°C, 12h)
 - ★ Essais au méthanol acidifié (HCl 0,1M) à 0,5 et 10 cut-offs
 - dégradation 6MAM et Cannabinol

Extraction : SPE

- Cartouche HLB 1cc Oasis,Waters
- Application du protocole fournisseur
- Optimisation du pH tampon de reconstitution post-digestion pH 7 rendement moyen 94,4%

4. Précipitation / dilution / filtration

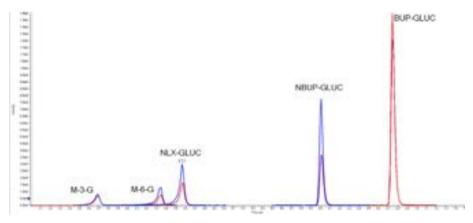

GHB et fluides biologiques (sang et urines)

- Objectifs et contraintes
 - GHB : petite molécule polaire
 - → Molécule endogène
 - ★ En CPG-SM ions communs à urée → CPG-SM²
 - Concentrations cibles (mg/L)

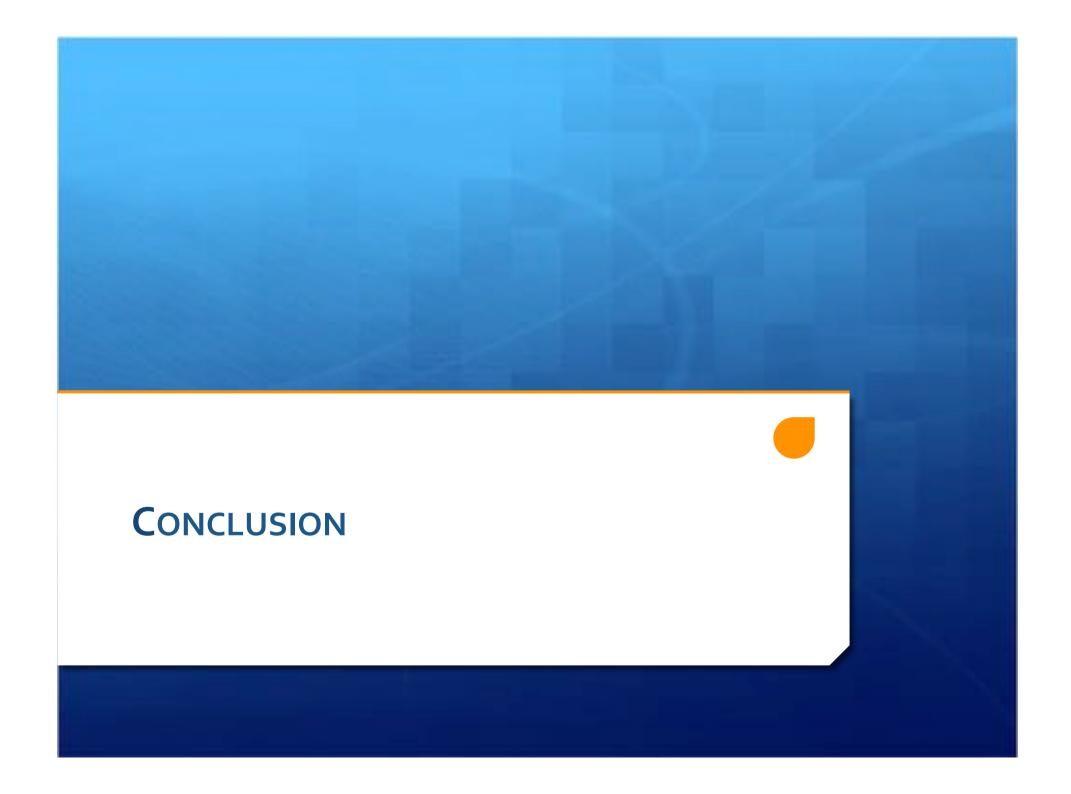
	Répertoriées après usage		Seuil de positivité		
	vivant	décédé	vivant	décédé	
sang	≈ 100	≈ 300	5	50	
urine	≈ 1000	≈ 2000	10	10	

→ Choix précipitation à acétonitrile de 50µL d'échantillon qsp 1mL

- Impact du volume d'ACN
 - Séquestration du GHB dans culot

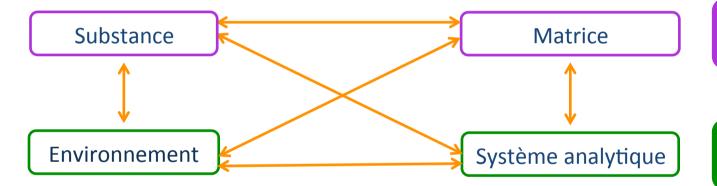

- Conséquence sur la préparation
 - Dilution préalable de l'échantillon dans 4 volumes d'eau
 - Gamme unique de 1 à 50 mg/L mais validation jusqu'à 500 dans le sang et 2500 dans l'urine par variation du volume de la prise d'essai (5 et 1μL)

4. Précipitation / dilution


Agonistes/antagonistes des opioïdes et leurs glucuronides/sang de rat

- Objectifs et contraintes
 - → Dosage de buprénorphine, norbuprénorphine, morphine et naloxone et de leurs glucuronides → extraction commune non réalisable, CLHP-SM²
 - → Cinétique chez le rat → très faible volume (<200μL)</p>
 - → Choix
 - précipitation de 50μL d'échantillon au ¼ dans acétonitrile puis dilution au ¼ de 100μL dans l'eau
 - → Colonne core-shell greffage Biphényl

- Sensibilité et robustesse
 - Run unique pour toutes les substances



- → Méthode validée
 - ◆ LQ de 1,9 / 3,5 à 4000 ng/mL
 - ◆ LD de 0,1 à 0,5 ng/mL

CONCLUSION

Paramètres à prendre en compte lors du développement

Paramètres universels

Paramètres laboratoire

- A chaque laboratoire de trouver son compromis
 - → Rationalisation du temps
 - + Equilibre entre méthode idéale et réaliste

MERCI DE VOTRE ATTENTION