QUOI DE NEUF EN CHROMATOGRAPHIE AU XXI ÈME SIÈCLE?

J-L. Veuthey, D. Guillarme SFTA, Paris, 22 Janvier 2016

LC-MS | the gold standard

Evolution of liquid chromatography

Fast and ultra-fast analysis in UHPLC

High pressure required

Method transfer | HPLC towards UHPLC

> Analysis time : proportional to column dead time

> **Backpressure** : inversely proportional to d_p^3 (at u_{opt}) and column length

x 9

> Solvent consumption : proportional to internal diameter and column length

 $\frac{V_2}{V_1} = \frac{dc_2^2}{dc_1^2} \times \frac{L_2}{L_1}$

Separation of drugs and impurities

ORIGINAL METHOD

High throughput analysis in HT-UHPLC

Column C₁₈ 2.1 x 50mm, 1.7µm, Flow rate 1.7 mL/min, Oven temperature 90 C, UV Detection 25 ms, 80 Hz

Important to minimize extra-column band broadening

- Need to increase acquisition rate
- Short injection cycle time

D.T.T. Nguyen et al., J. Chromatogr. A, 1167 (2007) 76-84

High resolution analysis in HPLC

Metabolite profiling of complex plant extract

Analysis of a standardized extract of Ginkgo Biloba

Peptide mapping of therapeutic mAb

Tryptic digest (peptide mapping) of **panitumumab**. Columns: Acquity BEH C18 300A - **150 mm x 2.1 mm, 1.7 \mum** (1 and 3 columns in series). Mobile phase A: 0.1% TFA in water, mobile phase B: 0.1% TFA in acetonitrile. Gradient: 10-55 %B, flow: 0.30 and 0.10 mL/min for the 150 and 450 mm long columns, respectively. **Temperature: 50C**, Detection FL: 280-360 nm. Injected volume: 5 and 15 μ L for the 150 and 450 mm long columns, respectively.

S. Fekete et al, J. Pharm. Biomed. Anal. 83 (2013) 273

Evolution of liquid chromatography

Superficially porous particles : SPP

SPP = superficially porous particles = core-shell = fused-core

3rd generation: Technology updated by J.J. Kirkland and commercialized by various companies since 2007 (particle size of 2.6 - 2.7 μ m, shell thickness of 0.35 - 0.5 μ m).

Analysis of small and large molecules by RPLC

2.5-2.7 µm SPP phases on the market

Analysis of drugs: core-shell vs porous particles

Columns of 50x2.1mm; gradient: 1 min at 5%ACN, then 5-95%ACN in 3 min @ 500 µL/min; 0.1%FA in both ACN and water.

High resolution separation of a tryptic digest

Tryptic digest of four proteins (myoglobin, BSA, ovalbumin, β -lactoglobulin) – gradient 2-50%ACN in 30 min @ 500 μ L/min with 0.1%TFA in water and ACN – T=50 C – λ =214nm, column: 150x2.1mm

High peak capacity with peptides of 0.5 to 2 kDa on any modern RPLC phases

A. Staub et al., J. Chromatogr. A, 2011, 1218, 8903

Evolution of liquid chromatography

HILIC: an alternative to RPLC

1990: Alpert coined the term « HILIC » to describe the hydrophilic partitioning between a water enriched layer at the surface of the stationary phase and the mobile phase.

B. Buszewski et al., Anal. Bioanal. Chem., 402 (2012) 231-247

HILIC for drugs and metabolites

Evolution of liquid chromatography

Modern SFC: a viable alternative to RPLC?

High versatility of SFC vs other techniques

Ultra-fast analysis of steroids

Mixture of 5 structurally related steroids. Column UPC² BEH (3.0 x 100mm, 1.7μm). Gradient from 10% to 12% MeOH in 0.6min followed by an isocratic step of 0.4 min. Back pressure regulator and oven temperature were set at 145 bar and 40°C, respectively.

For 10 successive injections, RSD on t_r were between 0.35 and 0.59%

High resolution analysis of benzodiazepines

Mixture of 11 structurally related benzodiazepines (elution order: prazepam, flunitrazepam, clorazepate, desmethylflunitrazepam, nitrazepam, nitrazepam, clonazepam, midazolam, brotizolam, 7-aminoflunitrazepam, alprazolam and triazolam).

Selectivity on structurally related compounds

Evolution of liquid chromatography

Analytical characterization of molecules

Important micro-heterogeneity during the production of biologics

Analytical methods for macromolecules

Analysis of intact mAbs

Columns of 150x2.1mm, T = 80°C (Waters Acquity C18, 1.7μm, 300A) and 90°C (Phenomenex Aeris C18, 3.6 μm SPP, widepore)

Evolution of liquid chromatography

Acknowledgments

Dao NguyenJosephine RutaAline StaubSzabolcs FeketeAlexandre Grand-Guillaume PerrenoudAurélie PeriatSerge RudazJean-Luc Wolfender

Alain Beck

Thank you for your attention !

THE SCIENCE OF WHAT'S POSSIBLE.™

Réponses aux questions

1. La chromatographie en phase supercritique

A : est réservée aux composés apolaires	NON
B : permet des séparations rapides	OUI
C : est adaptée aux biomolécules de grande taille	NON
D : utilise une phase mobile constituée d'un mélange de CO ₂ et de méthanol	OUI
E : peut-être couplée à la spectrométrie de masse	OUI

Instrumental constraints

A new generation of UHPSFC systems

Superficially porous particles : SPP

A small layer (0.5µm) of uniform porous particles is grown around a solid core of non porous silica material (1.7µm).

www.sigmaaldrich.com

- Lower mass transfer resistance, longitudinal and eddy diffusion: better chromatographic performance
- Compatible with fast analysis and high resolution chromatography
- Initially developed for high molecular weight compounds (MW>600g.mol⁻¹) such as peptides and proteins (low D_m) but today applied to all molecules

www.sigmaaldrich.com

SPP: a good compromise...

Fully porous particles (FPP) Good kinetic performance Good mechanical stability

Large specific surface area

- High loading capacity
- Good retention

High backpressure with small particles

Superficially porous particles (SPP)

Diameter: 2.6-2.7 μm Porous layer: 0.35-0.5 μm

Non-porous particles (NPP)

Low specific surface area

- Poor loading capacity
- Limited retention

High kinetic performance Huge mechanical stability

Good loading capacity and retention Large choice of column dimensions and chemistries/providers

Frictional heating in UHPLC?

Theoretical approach

Practical approach

Analytical	2.1 mm I.D.		1.0 mm I.D.	
column:	1.7 µm		1.7 µm	
	ΔT [°C]	ΔT [°C]	ΔT [°C]	ΔT [°C]
	pH 3.0	pH 9.0	pH 3.0	pH 9.0
100 bar	+ 0	+ 0	+ 0	+ 0
300 bar	+ 4	+ 4	+ 3	+ 3
600 bar	+ 8	+ 8	+ 6	+ 6
1000 bar	+ 16	+ 16	+ 12/+13	+ 12/+13

L. Novakova, J.L. Veuthey, D. Guillarme, J. Chromatogr. A, (2011), 1218, 7971-7981

Effect of high pressure on retention

Case of small analytes

Column: C18 (50 mm x 2.1 mm, 1.7µm), mobile phase: water (0.1% TFA) + acetonitrile (0.1% TFA) : 70 + 30 v/v, flow-rate: varied between 100, 500 and 900 µL/min, temperature: 30 °C, injected volume: 0.5 µL, detection: 210 nm. Peaks: lidocaine (1), salicylic acid (2), bupivacaine (3), propranolol (4), propylparaben (5) and testosterone (6).

Sensitivity in HILIC-MS vs. RPLC-MS?

56 basic drugs of diverse polarity were tested on modern UHPLC-ESI-MS/MS instrument

Comparison of current LC technologies

Comparison made for butylparaben (MW=200 g.mol⁻¹) with η=0.89 cp @ 30°C and 0.41 cp @ 90°C. Pressure was equal to 400 bar in all cases except those cited at 1000 bar and UHPLC and SPP 1.3µm, monoliths at 200 bar and SPP 2.6 µm at 600 bar.

D. Guillarme et al., Anal. Bioanal. Chem., 2010, 397, 1069